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FLOOD ROUTING: A SYNOPSIS OF PAST, PRESENT, AND
FUTURE CAPABILITY

D. L. Fread
Senior Research Hydrologist,
Office of Hydrology, National Weather Service
8060 13th Street, Silver Spring, Maryland 20910

ABSTRACT

Flood routing may be defined as a mathematical method (model) for
predicting the changing magnitude and celerity of a flood wave which
propagates through a river, reservoir, or estuary. A brief review is
presented of the development of flood routing models. Commencing with
investigations as early as the 17th century, mathematical techniques to
predict wave propagation have been continually developed and appear
profusely in the engineering 1iterature. The basic theory for the one-
dimensional analysis of flood wave propagation was originally developed
by Saint-Venant in 1871; however, due to the mathematical complexity of
the theoretical equations, simplifications were necessary in order to
attain feasible solutions of the salient properties of the wave. Such
simplifications included: 1) purely empirical techniques, 2) linearized
versions of the St. Venant equations, 3) hydrologic (storage) routing
techniques based on the conservation of mass and an approximation of the
relationship between flow and storage, and 4) simplified hydraulic rout-
ing techniques based also on the conservation of mass and a simplified
form of St. Venant's conservation of momentum equation. During the last
two decades, finite difference solutions of the complete St. Venant
equations have become possible due to the advent of high-speed com-
puters. Of the several complete solution techniques developed, the
implicit finite difference method appears the most promising for many
flood routing applications because of its desirable computational
efficiency. An attempt is made to ascertain the future trends in flood
routing model development. Such trends are proposed on the basis of the
present deficiencies in flood routing and the tractability for their
improvement. A significant area of model development will be the incor-
poration of the existing knowledge of sediment transport, ice
hydraulics, groundwater hydraulics, flood plain and bridge hydraulics
into modular-designed flood routing models suitable for a wide range of

applications.
INTRODUCTION

Flood routing has long been of vital concern to man as he has
sought to understand, construct, and improve the transport of water via
such waterways as canals, rivers, reservoirs, and estuaries. Flood
routing as treated herein is the mathematical prediction of the salient
properties of a flood wave such as its shape, magnitude, and celerity.
These are continually changing as the wave propagates along the water-
way. The wave may emanate from precipitation runoff, tides, and reser-
voir releases.
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Commencing with investigations by such eminent scientists as Newton
(1687), Laplace (1776), and Lagrange (1783), and continuing into the
1800's by such as Poisson (1816), Cauchy (1827), Green (1837), Russell
(1844), Bazin (1862), Boussinesq (1871), and culminating in the one-
dimensional equations of unsteady flow derived by Saint-Venant (1871),
the theoretical foundation for flood routing was essentially achieved.
The St. Venant equations consist of a conservation of mass equation:

3(AV) | 8A _

-t 3t " (1)
and a conservation of momentum equation:

v 3V dh _

TVt 9 (57-+ Sf)- 0 (2)

in which t is time, x is distance along the longitudinal axis of the
waterway, A is cross-sectional area, V is velocity, g is the gravity
acceleration constant, h is the water surface elevation above a datum,
and S¢ is the friction slope which may be evaluated using a steady flow
empirical formula such as the Chezy or Manning equation. Egs. (1-2) are
quasi-linear hyperbolic partial differential equations with two depend-
ent parameters (V and h) and two independent parameters (x and t). A is
a known function of h and S¢ is a known function of V and h. No analyt-
ical solutions, particularly for practical boundary conditions, exist
for Eqs. (1-2).

Due to the complexities of the St. Venant equations their solution
was not feasible, and various simplified approximations of flood wave
propagation continued to be developed. Indeed such techniques appear
profusely in the engineering literature. An excellent summary of such
is presented by Miller and Yevjevich (1975). The simplified methods may
be categorized as: 1) purely empirical, 2) linearization of St. Venant
equations, 3) hydrologic, i.e., based on the conservation of mass and an
approximate relation between flow and storage, and 4) hydraulic, i.e.,
based on the conservation of mass and a simplified form of the conser-
vation of momentum equation. Within the last quarter of a century the
advent of high-speed computers have made it possible to. obtain solutions
of the complete St. Venant equations. In fact, in recent years, flood
routing models based on the complete St. Venant equations have become
economically feasible as a result of advances in computing equipment and
improved numerical solution techniques. Herein is presented a brief
summary review of several one-dimensional flood routing models in each
of the above categories. Also, proposals are made for future improve-
ments in flood routing which are considered to be possible and which
will effect important gains in the ability of hydrologists and engineers
to predict flood wave propagation in natural waterways.

EMPIRICAL MODELS
Lag Models

Some flood routing models are based on intuition and observations
of past flood wave motion. One category of empirical models is the lag
models in which lag is the time difference between inflow and outflow
within a routing reach. The successive average-lag method developed by
Tatum (1940) assumes that there is some point downstream where the flow
(I,) at time (t,) is equal to an average flow, i.e., (Iy + I5)/2. Tatum
found that the number of successive averages occurring within a reach
was approximately the time of travel of the wave divided by the reach
length. Outflow at the end of the reach is computed hy:

0n+1 | Il + Co Iz + ceee Cpyl In+1 (3)
where n is the number of sub-reaches (successive averages) within the
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routing reach. The routing coefficients used in the method can be
obtained via Tatum's approach or by trial and error using observed
inflow and outflow hydrographs. Another similar lag model known as the
progressive average-1ag method (Harris, 1970) was developed by the Army
Corps of Engineers (1935). The routing coefficients in Eq. (3) may also
be obtained via a least-squares correlation of inflow and outflow hydro-
graphs as described by Linsely, et al. (1949).

Gage Relations

Other empirical techniques include gage relations (Linsley, et al.,
1949, pp. 517-530) which relate the flow at a downstream point to that
at an upstream station. Gage relations can be based on flow, stages, or
a combination of each. The effect of lateral inflow is automatically
contained in the empirical relation.

Empirical models are 1imited to applications with sufficient obser-
vations of inflows and outflows to calibrate the essential coeffi-
cients. They provide best results when applied to slowly fluctuating
rivers with negligible lateral inflows and backwater effects. They are
extremely economical in computational requirements; however, consid-
erable effort may be required to derive the empirical coefficients.

LINEARIZED MODELS

The complexity of the St. Venant equations has caused many scien-
tists and engineers to simplify them in order to obtain solutions. The
simplifications have been to either totally ignore the least important
nonlinear terms and/or to linearize the remaining nonlinear terms in the
equations. Given a sufficiently simplified form of the equations, they
can be integrated analytically to obtain solutions of velocity and water
surface elevation for any pair of (x,t) values at a relatively small
expenditure of computational effort. Usually the most common simplify-
ing assumptions are: 1) ignore the second term in Eq. (2); 2) constant
cross-sectional area, usually rectangular; 3) constant channel bottom
slope, often assumed to be zero; 4) the friction slope term is linear-
ized with respect to velocity and depth; 5) no lateral inflow; and
6) the routed flood wave has a simple shape that is amenable to an
analytical expression. These simplifications usually invoke severe
limitations on the conditions for which the solution is valid.

Classical Wave Models
Neglecting lateral inflow and frictional resistance and nonlinear

terms V 3A/3x and V 3V/3x in Eqs. (1-2), the following classical linear
wave equations may be obtained:

2 2
%V - 2y
— =W — (4)
at ax
32h=9932h (5)

where y is the average depth. The analytical solutions of Egs. (4-5)
have the following form (Abbott, 1966):

V=C1(X-V@1ﬂ+CZ(X+V® t)

where C; and C, are functions determined by initial flow conditions and
the boundary conditions.

Assuming a rectangular cross section, zero bottom slope, 1inearized
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resistance, and neglecting the V 3V/3x term, the following equation may
be obtained after combining the resulting simplified forms of Eqs. (1-2)
and eliminating h:

2 2

- 3%y 2%y 3V

gy = + qC =% (6)
e atl o3t

in which C, is a constant depending on the linearized resistance term.
Eq. (6) is in the form of the telegraph-equation which has been exten-
sively studied (Dronkers, 1964).

“imple Impulse Response Model

Linear systems theory has also been used to develop routing tech-
niques (Dooge, 1973). In this approach, the routing model is assumed to
?e composed of linear reservoirs connected by linear channels. Accord-
ing to linear systems theory, any linear system is completely and
uniquely characterized by its unit impulse response. By knowing the
unit impulse response, all possible system outputs may be determined for

all possible inputs. The input-output relationship is defined by the
convolution integral:

¢
o(t) = jo'I(t) H(t-1)dt

in which 0(t) is the routed flow, I(t) is the inflow, and H(t-t) is the

unit impulse response. The unit impulse response for a distributed
1inear reservoir is given by Maddaus (1969) as:

N -(t-n1)/k n-1
_1 e t-nt
HN(x,t) = 'N' n=1 k r(n) ( k) LY t>nT

where N is the number of linear elements, I'( ) is the gamma function, k
is the characteristic 1inear reservoir time constant, and t is the time
constant of the channel. The parameters k and t are obtained by a
fitting procedure described by Maddaus. A similar unit-response
approach for routing through a single 1inear reservoir was reported by
Sauer (1973). This approach is analogous to the unit hydrograph used by
hydrologists to compute precipitation runoff. It is also somewhat
related to the lag methods described previously.

Complete Linearized Model

Linearized models of the complete St. Venant equations were devel-
oped by Lighthill and Whitham (1955) and Harley (1967). If Eqs. (1-2)
are rewritten for a unit-width channel and in terms of unit discharge
(q) and depth (y), and then combined and linearized about a reference
flow velocity (V,=q,/y,), the following 1inearized equation is obtained
(Harley, 1967):

2 2 2 S
3 _y 2,3 9 q 3°q _ aq 0 3q
Wo = Vo) Z - Hogme 2 ot Wy S ()

in which So is the channel bottom slope. Harley obtained the following
unit response function for Eq. (7):

Hix,t) = e PX 8(t-x/C;) + h (x/C; - x/C,) e " 1[2hm)/m

where: Cl = vo +\/§yo
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€2 = Yo -V,

Fo= Vo/ V¥,

P = Sy(2F)/[2yo(F+)]

o= SoVo(24F2)/ (2y4F2)

s = Sy/(2y,)

h = SoVo YI4F2) (1F2)/(dy F2)
m = Yt-x/Cy) (t-x/Cy)

and I[ ] is a first order Bessel function of the first kind and § is the
delta function. This model is similar to the diffusion analogy model
developed by Hayami (Chow, 1959, p. 601-604); however, it does not over-
attenuate the flood wave as much as the simpler diffusion analogy

model. The accuracy of the model is very dependent on the reference
flow (Bravo, et al. 1970).

Multiple Linearized Models

Keefer and McQuivey (1974) present an improved method for 1inear-
ized models in which they introduce the concept of multiple lineari-
zation. They applied the multiple 1inearization technique to both the
complete linearized model of Harley and the diffusion analogy model;
they concluded the latter was more practical.

The applicability of linearized models is 1imited by the assump-
tions in their derivation. The complete 1inearized model and the
diffusion analogy model of Hayami are the least restricted, although
neither is appropriate when backwater effects exist due to the presence
of tides, significant inflows, dams, bridges, or cross-section
irregularities.

HYDROLOGIC MODELS

Significant river improvement projects in the early 1900's provided
the impetus for development of an array of simplified flood routing
methods. These have been termed hydrologic models. They are based on
the conservation of mass Eq. (1) written in the following form:

I -0 =aS/at (8)

in which AS is the change in storage within the reach during a At time

increment; the storage (S) is assumed to be related to inflow and/or
outflow, i.e.,

S = K[XI + (1-X)0] (9)

Reservoir Routing Models

One hydrologic model, variations of which are attributed to
Goodrich (1931) and Puls (1928), was developed by letting X in Eq. (9)
be assumed zero, i.e., storage is dependent only on outflow. Expressing
Eq. (8) in centered finite difference form, the following reservoir
routing model is obtained:

I, +1

2 01 %0, S;-5

1 -
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which can be rearranged as:

2S

1
ot

which can be solved step-by-step for the left-hand side since 0y and S
are known at time t = 0. An S - 0 relationship obtained from observed
inflow-outflow hydrographs, allows the outflow (0,) to be determined.

2S

0l

-0

1 1

Muskingum Model

If Eq. (9) with non-zero values for K and X is used for the storage
relationship and this is substituted in Eq. (10), the following equation
for computing 0, is obtained:

0p = Colp + CyIy + Cp04 (11)
where: Cy = - (KX - at/2)/C4

Cy = (KX + at/2)/Cq

Cp = (K - KX - at/2)/Cq

C3 = K - KX + at/2

Eq. (11) is the widely used Muskingum routing model first developed by
McCarthy (1938). The parameters K and X are determined from observed
inflow-outflow hydrographs using such techniques (Singh and McCann,
1980) as: 1) least-squares or its equivalent, the graphical method,

2) method of moments, 3) method of cumulants, and 4) direct optimization
method. Singh and McCann conclude that there is no particular advantage
of one method over another. Cunge (1969), has also provided a method
for estimating K and X on the basis of channel characteristics. The
Muskingum model continues to be popular, and papers treating it or its
variations continually appear in the literature, e.q., Nash (1959),
Diskin (1967), Cunge (1969), Ponce and Yevjevich (1978), Gi1l (1978),
Ponce (1979), Koussis (1980), Singh and McCann (1980), and Strupczewski
and Kundzewicz (1980).

Muskingum-Cunge Model

An important variation of the Muskingum model was developed by
Cunge (1969). Cunge develops the Muskingum equation using kinematic
wave theory including the assumption of a single-valued stage-discharge
relation and a four-point implicit finite difference approximation tech-
nique. Eq. (11) remains the same, but the following expressions for K
and X are determined:

K = ax/c
_1
X = 2—[1 - Qo/(Boc So ax)]
where: c = dQ/dA
in which ¢ is the kinematic wave speed corresponding to a reference dis-
charge Q,, Ax is the reach length, S, is the channel bottom slope, and
B, is channel width corresponding to Q,. Ponce and Yevjevich (1978)

expanded this method by using variable parameters c and B for temporally
varying Q.
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Kalinin-Miljukov Model

Another variation of the Muskingum model is the Kalinin-Miljukov

method (Miller and Cunge, 1975, pp. 232-236) developed in the 1950's in
the U.S.S.R. This model is:

02 = 01 + (Il - 01) K1 + (12 - Il) Kz (12)

where: Ky =1 - e'CM'/AX

Kp =1 - Kle/(CAt)

0,/S, (ah/aQ)

Ax

in which Ah/aQ is the slope of the stage-discharge rating curve.
Eq. (12) is identical to the Muskingum model if in the latter
K = ax/c and X = 0.

Yet another variation of the Muskingum model is the SSARR routing
model (Rockwood, 1958) which Miller and Cunge (1975, pp. 237-241) show
is similar to the Muskingum model with X = 0.

Lag and Route Model

Another storage routing model is the Lag and K model (Linsely,
et al., 1958, pp. 230-232). The inflow is first lagged and then the
outflow (0,) at time (t;) is determined by substituting the relation
AS = K (02-01) in Eq. (%0) and solving for 0,, i.e.,

0p = [I; + I, - 0; (1-2K/at)]/(1+2K/at)

The lag factor and the K factor may be constant, or they can be func-
tions of the inflow and outflow, respectively. Actually, this model is
derived via a combination of storage routing principles and empiricism
introduced through the lag factor. Another recently proposed lag and
route model is reported by Quick and Pipes (1975).

It appears that the Cunge version of the Muskingum model is the
most versatile and physically relevant of the hydrologic models; how-
ever, it along with the other storage routing models are restricted to
applications where the stage-discharge relation is single-valued. Thus,
backwater effects from tides, significant tributary inflow, dams, and
bridges are not considered by these models nor are they well-suited for
very mild sloping waterways where looped stage-discharge ratings may
exist. The other storage routing models are also limited to applica-
tions where observed inflow-outflow hydrographs exist. It must be
remembered that when using the observed hydrographs to calibrate the
routing coefficients, variations in flood wave shapes within the
observed data set are not considered, and only the average wave shape is
reflected in the fitted routing coefficients.

SIMPLIFIED HYDRAULIC MODELS
Simplified hydraulic models are based on the conservation of mass
Eq. (1) and a simplified form of Eq. (2). These models were developed
as the high-speed computer became available.

Kinematic Models

One type of simplified hydraulic model is the kinematic wave
model. Interest in this model was sparked by the work of Lighthill and
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(1967), Streeter and Wylie (1967), Baltzer and Lai (1968), and E11lis
(1970). Implicit characteristic models were reported by Amein (1966)
and Wylie (1970). Characteristic models can have a curvilinear grid or
a rectangular grid in the x-t solution domain. The former is not prac-
tical for application in natural waterways of irregular geometry. The
latter, known as the Hartree method, requires interpolation formulae
meshed within the finite difference solution procedure. These restric-
tions have tended to discourage the application of characteristic models
for flood routing. The method of characteristic models for prismatic
channels are based upon the following four total differential equations:

dx/dt - V -{[dA/B = 0 (17)

dv/dt +4/gB/R dy/dt + g(Sg-Sy) + q(V-v,)/A - \[gB/A q/B = 0 (18)
dx/dt - V +JgA/B = 0 (19)
dv/dt - \/gB/A dy/dt + g(Sg-Sy) + a(V-v,)/A +[gB/A q/B = 0 (20)

Eqs. (17-20) are equivalent to the St. Venant partial differential
Eqs. (1-2) except that lateral inflow (q) has been included. The term
vy is the velocity of the lateral inflow in the x-direction of the

waterway, A is cross-sectional area, B is cross-sectional top width, and
y is depth.

Explicit Models

Explicit finite difference models advance the solution of the
St. Venant equations point by point alona one time 1ine in the x-t
solution domain until all the unknowns associated with that time line
have been evaluated. Then, the solution is advanced to the next time
1ine. In an explicit scheme, the spatial derivatives and non-derivative
terms are evaluated on the time 1ine where the values of all variables
are known. Only the time derivatives contain unknowns. Thus, in an
explicit model, two linear algebraic equations are generated from the
two St. Venant equations at each net point (node). Since the two
equations can be solved directly for the unknowns, the equations are
described as "explicit."

The development of explicit models began with the pioneering work
of Stoker (1953) and Isaacson, et al. (1954, 1958) who applied an ex-
plicit scheme to route floods in the Ohio River. Among those who have
reported on explicit models are Liggett and Woolhiser (1967), Martin and
DeFazio (1969), and Strelkoff (1970). Also, Dronkers (1969), Balloffet
(1969), Kamphuis (1970) and Thatcher and Harleman (1972) applied ex-
plicit models to analyze tidal movement in estuaries. Garrison, et al.
(1969) and Johnson (1974) applied the explicit models for flood routing
in rivers and reservoirs. Many variations of the explicit method have
been developed. Some were developed specifically for rapidly varying
unsteady flow in which bore formation was 1ikely, e.g., the Lax-Wendroff
two-step scheme reported by Richtmyer (1957). Other popular schemes
include the Stoker scheme, which was used by Isaacson, et al. (1958),
the diffusion scheme, and the leap-frog scheme which were developed for
gradually varying flows. These explicit finite difference schemes have
been described and analyzed by Liggett and Cunge (1975).

In explicit models, Eqs. (1-2) are usually expressed in the follow-

ing form to allow an explicit solution of their finite difference
approximations:

530



Whitman (1955). The essence of the kinematic model is the use of the
following simplified form of the conservation of momentum Eq. (2), i.e.,

S¢g - S =0 (13)

where 3h/3x = 3y/3x - S_in Eq. (1). Eq. (13) essentially states that
the momentum of the uns%eady flow is assumed to be the same as that of
steady uniform flow as described by the Chezy or Manning equation or
some other similar expression in which discharge is a single-valued
function of stage, e.g.,

A = oQ? (14)

in which A is the cross-sectional area, a = [B/(CZS )]1/3, g =2/3, C is
the Chezy coefficient. Combining Eqs. (13-14) and Eq. (1) results in
the following nonlinear kinematic wave model (Li, et al., 1975, 1976):

30 B-1 30 _
a_x"+a80 W—O

which can be solved by explicit or implicit finite difference methods,
the latter being more efficient in most river applications. The kine-
matic wave model is 1imited to applications where single-valued stage-
discharge ratings exist, and where backwater effects are insignificant
since in kinematic models flow disturbances can only propagate in the
downstream direction. Also, the kinematic model modifies the flood wave
through attenuation and dispersion via the errors inherent in the finite
difference solution technique. The phenomenon of numerical damping
merely mimics the actual physical damping of a flood wave since there is
no mechanism in the basic kinematic equation to cause such damping. The
kinematic wave models are very popular in applications to overland flow
routing of precipitation runoff, e.g., Wooding (1965), Woolhiser and
Liggett (1967), and Gburek and Overton (1973). Kinematic wave models
have been used in streamflow applications by Harley, et al. (1970) in
the MIT catchment model and in the Hydrocomp model (Linsely, 1971).

Diffusion Models

Another simplified hydraulic model is the diffusion model which
utilizes Eq. (1) and the following simplified form of Eq. (2):

S¢ - dh/ox = 0 (15)

Eq. (15) may be expressed in terms of channel conveyance K. which is a
single-valued function of elevation h, i.e.,

Q = Kc(hy12hy/Iny| (16)

where hx = 3h/3ax. Eq. (15) allows for upstream directed flows.
Brakensiek (1965) solved Eqs. (15-16) with a four-point centered
implicit finite difference solution technique for reasons of compu-
tational efficiency. Harder and Armacost (1966) used an explicit finite
difference solution technique for the diffusion routing model used by
the Army Corps of Engineers (Harrison and Bueltel, 1973) on the Missouri
River. This model is restricted to small At time steps due to the
numerical stability constraint given by:

1/2

2
At < B S/ AXT/(K, + S ax &K /Ah)

The nonlinear diffusion wave model is a significant improvement over the
kinematic model because of the inclusion in Eq. (15) of the water sur-
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face slope term (3h/3x) of Eq. (2). This term allows the diffusion
model to describe the attenuation (diffusion effect) of the flood
wave. It also allows the specification of a boundary condition at the
downstream extremity of the routing reach to account for backwater
effects. It does not use the inertial terms (first two terms) of

Eq. (2) and, therefore, is l1imited to slow to moderately rising flood
waves in channels of rather uniform geometry. Of significant interest,
Sevuk (1973, p.22) found that inclusion of the inertial terms in an
implicit (finite difference) diffusion model resulted in only a 20%
increase in computational effort.

A third type of simplified hydraulic model is the quasi-steady
dynamic wave hydraulic model in which Eq. (1) is used along with Eq. (2)
with all its terms except 3V/3t. This simplification saves very little
in computational effort and introduces more error than the simpler
diffusion model. The quasi-steady model has been infrequently used and
its further use is not recommended.

The applicability of the kinematic and diffusion models has
recently been treated by Ponce, et al. (1978) who utilized a linear
stability analysis of the finite difference form of the St. Venant
equations to examine the applicability of kinematic and diffusion
models. They compared wave attenuation factors and celerities and
concluded that bottom slope and wave shape determine the range of their
suitable applicability. In general, the steeper slopes associated with
overland flow or steep streams with slow-rising floods were amenable to
the use of kinematic models. The diffusion models had a wider range of
applicability and could accommodate milder bottom slopes. However,

there still remain many practical combinations of mild sloping channels
and flood wave shapes that are not suitable for either diffusion or
kinematic approximations and should be treated with the complete

St. Venant equations.

COMPLETE (DYNAMIC WAVE) HYDRAULIC MODELS

If the complete St. Venant equations are used, the model is known
as a dynamic wave model. With the advent of high-speed computers Stoker
(1953) and Isaacson, et al. (1954) first attempted to use the complete
St. Venant equations for flood routing on the Ohio River. Since then,
much effort has been expended on the development of dynamic wave models,
and the Titerature contains many dynamic models. They can be cateqgo-
rized according to direct and characteristic methods. In the direct
methods, finite difference approximations are substituted directly into
Eqs. (1-2) and solutions are obtained for incremental times (At) and
incremental distances (Ax) along the waterway. In the method of charac-
teristics, the partial differential Eqs. (1-2) are first transformed
into an equivalent set of four ordinary differential equations which are
then approximated with finite differences to obtain solutions. Dynamic
models can be classified further as either explicit or implicit, depend-
ing on the type of finite difference scheme that is used. Explicit
schemes transform the differential equations into a set of easily solved
algebraic equations. However, implicit schemes transform the differ-
ential equations into a set of algebraic equations which must be solved
simultaneously; the set of simultaneous equations may be either 1inear
or nonlinear, the latter requiring an iterative solution procedure.

Characteristic Models

Several method of characteristic models (Abbott, 1966) were devel-
oped in the 1960's. Most were explicit, e.q., Liggett and Woolhiser
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(1967), Streeter and Wylie (1967), Baltzer and Lai (1968), and E11lis
(1970). Implicit characteristic models were reported by Amein (1966)
and Wylie (1970). Characteristic models can have a curvilinear grid or
a rectangular grid in the x-t solution domain. The former is not prac-
tical for application in natural waterways of irregular geometry. The
latter, known as the Hartree method, requires interpolation formulae
meshed within the finite difference solution procedure. These restric-
tions have tended to discourage the application of characteristic models
for flood routing. The method of characteristic models for prismatic
channels are based upon the following four total differential equations:

dx/dt - V -,[dA/B = 0 (17)
dv/dt +4/gB7R dy/dt + g(Sg-Sg) + q(V-v,)/A - \[gB/A a/B = 0 (18)
dx/dt - V +\[A/B = 0 (19)
dV/dt - \[gB/A dy/dt + g(Sg-Sy) + a(V-v,)/A +[gB/A /B

Eqs. (17-20) are equivalent to the St. Venant partial differential
Eqs. (1-2) except that lateral inflow (q) has been included. The term
vy s the velocity of the lateral inflow in the x-direction of the

waterway, A is cross-sectional area, B is cross-sectional top width, and
y is depth.

0 (20)

Explicit Models

Explicit finite difference models advance the solution of the
St. Venant equations point by point alona one time 1ine in the x-t
solution domain until all the unknowns associated with that time 1ine
have been evaluated. Then, the solution is advanced to the next time
line. In an explicit scheme, the spatial derivatives and non-derivative
terms are evaluated on the time line where the values of all variables
are known. Only the time derivatives contain unknowns. Thus, in an
explicit model, two linear algebraic equations are generated from the
two St. Venant equations at each net point (node). Since the two
equations can be solved directly for the unknowns, the equations are
described as "explicit."

The development of explicit models began with the pioneering work
of Stoker (1953) and Isaacson, et al. (1954, 1958) who applied an ex-
plicit scheme to route floods in the Ohio River. Among those who have
reported on explicit models are Liggett and Woolhiser (1967), Martin and
DeFazio (1969), and Strelkoff (1970). Also, Dronkers (1969), Balloffet
(1969), Kamphuis (1970) and Thatcher and Harleman (1972) applied ex-
plicit models to analyze tidal movement in estuaries. Garrison, et al.
(1969) and Johnson (1974) applied the explicit models for flood routing
in rivers and reservoirs. Many variations of the explicit method have
been developed. Some were developed specifically for rapidly varying
unsteady flow in which bore formation was 1ikely, e.g., the Lax-Wendroff
two-step scheme reported by Richtmyer (1957). Other popular schemes
include the Stoker scheme, which was used by Isaacson, et al. (1958),
the diffusion scheme, and the leap-frog scheme which were developed for
gradually varying flows. These explicit finite difference schemes have
been described and analyzed by Liggett and Cunge (1975).

In explicit models, Eqs. (1-2) are usually expressed in the follow-

ing form to allow an explicit solution of their finite difference
approximations:
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in which By is the wetted top width of the total cross-sectional area
(active an} inactive or off-channel storage areas). Also, the effect of
lateral inflow (q) is included in Eqs. (21-22).

Explicit models, although relatively simple compared to implicit
models, have a restriction in the size of the computational time step
due to reasons of numerical stability. In the diffusion scheme the
restriction in At is given by the lesser of the following two
inequalities (Terzidis, 1968):

AX

At ¢ — 2% (23)
TV +4/a A/B
_T__Cl R * (24)
At <
“gn° |V

in which n is the Manning roughness coefficient, ¢y = 1.0 in metric
units and ¢y = 2.21 in English units, and R is the hydraulic radius.
Eq. (23) is"known as the Courant condition. It is derived for a
frictionless flow and is dependent upon the flow velocity and the
celerity of small disturbances. When friction is considered, Eq. (24)
is also a restriction. Eqgs. (23-24) or some slight modification are
applicable to most explicit models.

Inspection of the stability criteria of Eq. (23) indicates that the
computational time step is substantially reduced as the hydraulic depth
(A/B) increases. Thus, in large rivers, it is not uncommon for time
steps on the order of a few minutes or even seconds to be required for
numerical stability even though the flood wave may be very gradual,
having a duration in the order of weeks. Such small time steps cause
the explicit-method to be very inefficient in the use of computer time.

Another disadvantage of explicit schemes is the requirement of
equal Ax distance steps. Although this can be relaxed somewhat by using
weighting factors, it can be quite disadvantageous for modeling flows in
natural waterways.

Implicit Models

Implicit finite difference schemes advance the solution of the
St. Venant equations from one time line to the next simultaneously for
all points along the time line (i.e., along the x-axis of the water-
way). Thus, in an implicit model, a system of 2N algebraic equations is
generated from the St. Venant equations applied simultaneously to the N
cross sections along the x-axis. Depending upon the type of implicit
finite difference scheme chosen, the system of algebraic equations so
generated may be either linear or nonlinear.

Implicit models were developed because of the limitations on the
size of the time step required for numerical stability of explicit
models. The use of implicit models was suggested by Isaacson, et al.
(1956) and first appeared in the literature in the early 1960's with the
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work of Preissmann (1961), and Vasiliev, et al. (1965). Later, Abbott
and Ionescu (1967), Baltzer and Lai (1968), Dronkers (1969), Amein and
Fang (1970), Gunaratnam and Perkins (1970), Kamphuis (1970), Contractor
and Wiggert (1972), OQuinn and Wylie (1972), Fread (1973), Chaudhry and
Contractor (1973), Greco and Panattoni (1975), Amein (1975), Amein and
Chu (1975), Chen and Simons (1975), Muir (1975), Bennett (1975), and
Fread (1976) were among those reporting their research with implicit
methods. )

Analysis of the numerical stability and accuracy of various im-
plicit schemes have been reported by Cunge (1966), Abbott and Ionescu
(1967), Dronkers (1969), Gunaratnam and Perkins (1970), Fread (1974),
Liggett and Cunge (1975, pp.157-163), and Ponce and Simons (1977).
Within the simplifications required in makina the numerical stability
analyses, the various implicit methods were found to be unconditionally
1inearly stable, i.e., the simplified 1inearized versions of the
St. Venant equations were numerically stable independent of the size of
the time or distance steps. However, Chaudhry and Contractor (1973),
Fread (1974) and Cunge (1975, pp. 539-586) found that instability could
occur for the implicit schemes if the time steps were too large and the
x-derivative terms were not sufficiently weighted towards the future
time line when modeling rapidly varying transients. Also, time steps
are restricted in size for reasons of accuracy; At is found to depend
upon the shape of the wave, the Courant condition, the Ax step size, and
the type of implicit scheme used. Nonlinearities due to irregular cross
sections having widths that vary rapidly in the x-direction along the
waterway or in the vertical direction can also cause numerical
instabilities.

Implicit models are computationally more complex than explicit
models. Depending on the type of implicit scheme (linear or nonlinear),
the number of computations during a time step increases by a factor of
approximately 2 to 4 compared to the requirements of an explicit scheme.
This increase is very much greater if the method of solving the system
of simultaneous equations is not an efficient method such as: 1) a
compact quad-diagonal elimination method described by Fread (1971) which
makes use of the banded structure of the coefficient matrix of the
system of equations, or 2) the double sweep method developed in Europe
(Liggett and Cunge, 1975, pp. 149-156). If the implicit scheme is
linear, only one solution of the system of equations is required at each
time step. However, if the implicit scheme is nonlinear, an iterative
solution is necessary, and this requires one or more solutions of the
system of equations at each time step. The use of the Newton-Raphson
iterative method for nonlinear systems of equations (Amein and Fang,
1970) provides a very efficient solution if selected convergence
criteria are practical. If the Newton-Raphson method is applied only
once, the nonlinear implicit model is essentially equivalent to the
linearized implicit models with respect to computational effort and
performance.

Nonlinear implicit methods can be based on the conservation form of
the St. Venant equations including lateral flow q (inflow is positive,
outflow is negative) and off-channel (inactive flow) storage area Aj,
i.e.,

3(A+A )
]
‘5% * 5{‘9_ -q=0 (25)
2
3Q , 3(Q™/A) 3h -
3{+_‘§)T_+9A(a_x+sf)+l'_0 (26)
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where L = -qv, for lateral inflow L = -qQ/A for bulk lateral outflow,

L = -q0/(2A) Yor seepage lateral outflow, and 0 is discharge. An
important advantage of Eqs. (25-26) when they are expressed in finite
difference form is their ability to describe steep-fronted waves. Also,
the dependent variables 0 and h are more convenient and useful than V
and y of Eqs. (21-22). Eqgs. (25-26) apply to waterways of nonprismatic
geometry.

Linear implicit methods often utilize an expanded form of Eqs. (25-
26) such as that used by Chen, et al. (1975, pp. 316-319), i.e.,

a0 oy -
xtBrag-a=0

30, , Q 02 [, ay 3y =
st ixax oz Bt ‘a"i)y=c *‘“(37‘ o’“5f>"L 0

in which By is the total top width (active and inactive), 3A/3x) y=c

is the variation of A with respect to x with the depth (y) held constant
and S¢ is expanded in a Taylor series in order to 1inearize this highly
nonlinear term, i.e.,

teat ot [ °5f \ teat ot 33¢ ’ teat  t
Sf = Sf + 3T (0 -07) + ¥ (y -y

in which the superscripts t and t+At indicate at which time 1ine the
term is evaluated. In linear methods, the accuracy of the solution is
very dependent on the size of At if the flow is rapidly changina with
time due to the assumption of 1inearity of flow throughout a time step.

Implicit schemes have generally been four-point, i.e., the conser-
vation of mass and momentum have heen applied to the flow existing
between two adjacent cross sections. The weighted four-point scheme
allows a convenient flexibility in the placement of x-derivative and
non-derivative terms between two adjacent time 1ines in the-x-t solution
domain. The weighting factor must be equal to or areater than 1/2 to
provide unconditional linear stability with respect to time step size,
and the accuracy of the scheme generally decreases as the weighting
factor approaches unity, i.e., when the terms are expressed entirely at
the forward time line. A few six-point schemes have been proposed,
e.g., Abbott and Ionescu (1967) and Vasiliev, et al. (1965), but they
have the disadvantage of requiring regular Ax intervals whereas the
four-point schemes allow variable Ax spacing. Also, the six-point
schemes treat the boundary conditions in a more complicated and less
desirable manner than the four-point schemes.

Finite Element Models

The method of finite elements (Gray, et al. 1977) can also be
applied to the complete St. Venant equations, e.qa., Cooley and Moin
(1976). Although this method of solution is popular in two-dimensional
unsteady flow models, it does not appear to offer any advantages over
the four-point nonlinear implicit models for the St. Venant one-
dimensional equations of unsteady flow. Also, the mathematical basis
for finite element solution schemes is not as easily understood as the
finite difference approach. At this time it seems that the personal
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preference of the model developer is the determining factor in selection
of finite element or finite difference solution methods for the
St. Venant equations.

Two-Dimensional Models

Two-dimensional hydraulic models such as the complete models
described by Hinwood and Wallis (1975a,b) and Abbott (1976), Abbott and
Cunge (1975, pp. 763-812), Grupert (1976), and the simplified models
described by Cunge (1975, pp. 705-762) and Vicens, et al. (1975), are
beyond the intended scope and have been omitted from consideration here-
in. They are generally much more expensive to calibrate and execute on
high-speed computers than the one-dimensional models discussed herein.
They are often considered as an alternative modeling approach whenever a
large amount of flow information is desired in complex unsteady flows
associated with estuarial networks and bays.

A VIEW TOWARD FUTURE IMPROVEMENTS

During the next few years, several improvements in flood routing
models are anticipated. An attempt is made herein to delineate the
general trend of such improvements and to suggest some specific defi-
ciencies in present models on the basis of their tractability for
improvement and their importance to hydrologists and hydraulic
engineers.

It appears that the trend for increasing computational speed and
storage capabilities of both large and small computers will be sustained
throughout the 1980's. Also, the accessibility to such computational
resources will become more commonplace and economically feas-ble to both
large and small agencies, universities, and engineering consulting
firms. For these reasons, flood routing models hased on the complete
St. Venant equations will continue to receive much attention from model
developers and increasing use in the engineering community. Since the
implicit dynamic models are the most promising of the complete hydraulic
models for many flood routing applications due to their superior compu-
tational efficiency, many future improvements will 1ikely be associated
with this type of model.

However, the simplified models will continue to be much used,
particularly as components of precipitation-runoff catchment models for
routing overland flow and channel flow associated with the network of
headwater streams which feed larger, more mild sloping collecting
streams. Therefore, it is important that the strengths and 1imitations
of the simplified models be set forth and their relationship to other
routing models, especially the complete models, he understood through
analyses similar to those by Cunge (1969), Miller and Cunge (1975,
pp. 183-248), Ponce, et al. (1978), and Koussis (1978, 1980). The
analysis should quantify a model's characteristics in terminoloqy
familiar to hydraulic engineers and devoid as much as possible of the
terminology associated with other disciplines as electrical engineering,
oceanography, etc. where similar analysis techniques were used prior to
their application to flood routing models.

Future improvements in implicit dynamic models include the follow-
ing: 1) Develop an efficient solution algorithm for flow which changes
from subcritical to supercritical, and vice versa, with both time and
distance along the waterway (this is especially important in the appli-
cation of implicit dynamic models to routing dam-break waves). 2) De-
velop an efficient solution algorithm for flows subject to significant
backwater effects in channel networks of dendritic and/or bifurcated
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configurations; during the past decade some effort has been made in this
area although an optimally efficient and versatile algorithm is still
needed; previous work in this area of model development include Kamphuis
(1970), Wood, et al. (1972), Fread (1973), Bennett (1975), and Yen and
Osman (1976). 3) Develop improved one-dimensional modeTing of meander-
ing rivers with short-circuiting flood-plain flow and large differences
between channel and flood-plain properties such as hydraulic roughness
and wave celerity; some effort in this area has been made by Radojkovic
(1976), Fread (1976), Tingsanchali and Ackermann (1976), and Weiss and
Midgley (1978). 4) Analysis of effects of nonlinear terms in the

St. Venant equations on the stability and accuracy of implicit solution
algorithms. 5) Develop manual and/or automatic smoothing techniques to
overcome nonlinear instabilities due to rapid variations of cross-
sectional properties with elevation and distance along the waterway.

A significant area of general improvement consists of expanding
flood routing models to account for significant effects of bridges,
breached or over-topped levees, ice covers, ice jams, flow exchanges
with groundwater aquifers due to bed and bank seepage and flood plain
infiltration, and bed elevation and bed roughness changes caused by
sediment transport. There exists a large body of knowledge in each of
these areas; however, the incorporation of this into flood routing
models has not received enough attention. Some work in this area has
been done, e.g., Chen and Simons (1975) and Ponce, et al. (1979)
concerning bed elevation changes due to sediment transport; Pinder and
Sauer (1971), Freeze (1972), Hall and Moench (1972), Cooley and Westphal
(1974), and Pogge and Chiang (1977) concerning the flow exchange between
the waterway and adjacent aquifer; Uzner and Kennedy (1976) concerning
ice jams; and Balloffet (1969), Cunge (1975, pp. 712-714), Fread (1978,
1980) concerning effects of levees, bridge/embankments, and other man-
made structures.

Development of updating techniques to improve real-time simulation
of unsteady flows such as in flood forecasting are needed. Approaches
include the use of filter theory, e.q., the Kalman filter technique
(Chiu and Isu, 1978).

Calibration of flood routing models is most essential for good
results. The calibration process for diffusion and dynamic hydraulic

models when applied to complex systems of waterways is often time-
consuming and requires considerable experience. There is a need for the
development of objective calibration methodologies which may be trial-
error and/or automatic, e.g., Yeh and Becker (1973), and Fread and Smith
(1978).

Flood routing models should be developed having a modular design.
This will permit convenient selection of various combinations of
external and internal boundary conditions permitting the same model to
be used for a wide range of applications.

CONCLUDING REMARKS

Flood routing has in the past and will continue to be an important
engineering endeavor, and this importance along with its inherent com-
plexity have been the reasons for the proliferation of routing models.
The literature abounds with a wide spectrum of useable and reasonably
accurate mathematical models for flood routing when each is used within
the bounds of its 1imitations.

Among the many models reviewed herein, the hydraulic models based
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on the complete St. Venant equations have the capability to correctly
simulate the widest spectrum of wave types and waterway character-
istics. Since the hydraulic models contain only one parameter (the
roughness coefficient), they are very amenable to the calibration
process. Also, since the roughness coefficient can be estimated with
some degree of accuracy from inspection of waterways, or better still
from minimal stage-discharge data, the hydraulic flood routing method is
preferred when there is a scarcity of pertinent inflow-outflow observa-
tions such as in the case of ungaged rivers or proposed man-made changes
to waterways. The hydraulic method is also preferred for routing floods
which extend beyond the range of the floods for which the model is cali-
brated. The dynamic wave models are preferred over all other models
when the downstream backwater effect is important such as that produced
by tides, significant tributary inflows, dams, and/or bridges, or when
upstream propagation of waves can occur from large tides and storm
surges or very large tributary inflows. The implicit dynamic wave model
is the most efficient and versatile although also the most complex of
the complete hydraulic models.

In the absence of significant backwater effects, the hydrologic
storage routing models offer the advantage of simplicity. The hydro-
logic models have two calibration parameters which can be calibrated to
effectively reproduce the simple characteristics of a flood wave such as
its celerity and crest attenuation. The Muskingum model continues to be
one of the more popular hydrologic models, and the Muskingum-Cunge model
has the advantage of identifying its two parameters with wave and chan-
nel characteristics when there is insufficient inflow-outflow observa-
tions. The linearized impulse response models, particularly the
multiple linearized models, also appear to be capable alternatives to
the Muskingum-type models. It should be remembered, however, that
insignificant backwater effect alone does not always justify the use of
hydrologic or the linearized models, since combinations of gently
sloping channels and rapidly varyina flood waves may also require the
complete hydraulic models for best results.

The final choice of a routing model is also influenced hy other
factors such as the required accuracy, the type and availability of
data, the available computational facilities, the computational costs,
the extent of flood wave information desired, and the familiarity of the
user with a given model. Taking all factors into consideration results
in the reality that there is no universally superior routing model.

At this time, with the demonstrated results of the many practical
and theoretical applications of flood routing models, it can be accepted
that the general principles of flood wave propagation in waterways with
unchanging characteristics are well understood. It remains for flood
routing models to be developed which can effectively and efficiently
consider the interactions of the flood wave propagation phenomenon with
sediment transporation, groundwater aquifers, ice, and man-made struc-
tures. In addition, the more complex implicit dynamic models which
promise economical feasibility for complex routing problems require
further development for efficient and convenient application to channel
networks, very irregular channel geometry, and mixed subcritical-
supercritical unsteady flows.
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